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1.  INTRODUCTION

The demonstration that the gauge theory of colored quarks and

gluong is the correct theory of the strong interactions requires

extensive calculation of radistive corrections. Quark and gluon

L

radiation can Induce qualitatively new phenomens. In addition, it

is only by comy

cing the higher order corrections to a given process
that one can test the vallidity of the lower order approximation. At
asymptotic energies we are assured by the asymptotic freedom of the

."ij.,\' 1 L a2 N 2 ! R SR ol
theory that the coupling constant am(Q ) becomes logarithmically

W, 2 . . . P . R o ]
emall with Q7 , the scale sige of the hard interaction. However,
at present sub-asymptotic energies these radiative corrections could
be numerically important,

)

In the present paper we make a first approach to the problem of

the calculation of one hadron inclusive hadron-hadron scattering beyond
the leading order, In the Born approximation this process has been
consgldered by several authors, and an extensive phenomenology has

been developed and compared with data{g]o The order Oy corrections

to the Born diagrams which have been cdlculated in the leading logarithmic
L3l

approximation give results in agreement with the factorization

theorem for the mass simgularities€4}g In this paper we calculate
contributions of order ag to the parton-parton cross section, retaning
both the logarithmic pieces contalning mass singularities and the non-
logarithmic pieces. We consider only the quark-quark scattering contribution
to the oné-hadron inclusive crosszsection., In a particular kinematic

© e

regime, gluons would not contribute significantly because of the softness



of their hadronization properties. In principle, this would allow us to
separate The problem of the sige of the corrections to the quark-quark
scattering cross-section from the problem of the definition of the gluon
distribution beyond the leading order. It also dramatically reduces
the number of dlagrams which we have to calculate. The radiative cor-
rections to this process are Interesting for several reasons. The
radiative corrections to the Drell-Yan process have been found to be
large at present energieé 5]. This result shifts the burden of proof;
the parton modeller is now obliged to show that higher order corrections
are small 1f he wishes to use the lowest order parton formula., One
hadron inclusive hadron-hadron scattering is also interesting because
unlike the processes previously considered 1t involves more than one
large scale which characterizes the hard scattering. By calculating the
higher order corrections we can determine which choice of scale minimizes
the higher order correctlons.

Our operating procedure is as follows. Following refs. 5, 6 we define
in section 2 quark distribution functions beyond the leading order in terms
of ng the structure function of deep inelastic scatteringa We define
quark fragmentation functions beyond the leading order in terms of the
transverse part of one particle inclusive e+e“ annihilation. Thus armed
with these definitions the problems of analyzing the finite corrections to
the one hadron inclusive cross section is well posed (apart from the de-
finition of the gluon distribution function which we consider later). In
section 3 we make use of this formalism In the analysis of one hadron in-
clusive hadron-hadron scattering. The actual perturbation calculation is

discussed insection JA(elastic graphs)and section 4B(inelastic graphs). In



sections 5 and 6, we display the result of our calculations and discuss
its consequences. Certain details of the calculation are given in the

appendices.
2., TORMALISM
[7]

In the simple parton model the inclusive cross section for

one hadron production at large transverse momentum

Hl(Pl) + H(P.) » HB(PB) + all

22
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is given by the formulal

oL,
3 d3P 1

(1)

This equation, illustrated in Fig. 1, describes the production of a

hadron at large transverse momentum in terms of distribution functions
I3)

e |

é;f (Xl> of the ith typeHof parton inslde the hadron Hl and the
ol

fragmentation function G (x ) giving the distribution of a hadron

ok
H, din the decay products of the kth type of parton. The indices

3
1,5,k rumn over gluons (G) and f flavors of quarks and antiquarks
(1...2f). The hadronic cross-section is thus expressed in terms

of the rescaled parton cross-sections for all the combinations of

incoming and outgoing partons. TFor example in the Born approximation



to the hard scattering cross-section,the contributing graphs are
given in Fig. 2.

The calculation of the parton cross-séctions beyond the leading
order in O yields large logarithms associated with mass singularities
These large logarithms, which at first sight appear to destroy the
convergence of the perturbation series, are universal properties of
the parton legs independent of the particular process and hence can
be factored out of the parton cross-sectlion and into the distribution
functioné@ After factorization of the mass-singularities, no small
mass scales remaln in the parton cross-section. The strength of the
interaction is therefore controlled by the running coupling constant
evaluated at a large scale assoclated with the hard interactlon
which we denote by QZ. The asymptotic freedom of the theory assures
us that, at infinite energy, the process 1s dominated by the Born
approxiamtion.

At sub-asymptotic energies a calculation beyond the leading
logarithmic approximation can supply answers to the following
questions:

1. Which combination of the hadronic variables 1s the besgt choice
for the scale Q2} controlling the fall-off of the running coupling
constant in the hadronic interaction? The best cholce is deemed to be

that choice which minimizes the correction term. Such a choice would

presumably lead to a more rapidly ~cnvergent perturbation series.



2. Which combination of the hadronic variables is the best choice
for the factorization scale M? (effectively the scale size at which
the parton distribution and decay functions are evaluated?)

3. Are the corrections large or small for all choices of Q2
and Mg?

It is clear from FEq. (1) that, even in the Born approximation,
we are dealing with a matrix problem of some complexity. In the next
order the number of graphs to be evaluated escalates,and each graph
contributes to at least two different inclusive cross-sections both
of which have to be calculated.

The present investigation limits itself to a (gauge invariant)
subgset of these graphs. We conslder only the radiative corrections

to the parton process
Q; *qy @+ anything (2)

(that is collisions of two quarks of distinct flavors i + J, where
either k=1  or k = j). Whilst it is in principle possible to
choose a kinematic configuration in which this subprocess gives the
dominant contribution because of the harder hadronization properties
of valence quarks, our main interest in the present paper is the

investigation of the magnitude of the corrections.



Expediency 1s not the only rationale for only considering
quark-quark scattering graphs. Experience from the Drell-Yan process
indicates that large corrections arise because of the emission of
soft radiation from a subprocess occurring in the Born cross-section.
Moreover, as will be explained in more detail below, our relative
ignorance of the gluon distribution vitiates any attempt to interpret
the results of a calculation inﬁolving Initial gluons.

To 11llustrate the factorization algorithm and to introduce our
cdefinition of the distribution and fragmentation functions beyond the
leading order, we turn now to deep inelastic scattering. The process

*,.
y (a) + H/(P) > anything

is described by a series of structure functions Fi(x,t), where

2,2
, L= 4n Q7 /u

The Bjorken scaling variable is denoted by x and u is an arbitrary
scale of mass. In the simple parton model, the structure function

F2 is given by,

H
XCIZ D M F(x) (3)

where the sum runs over all flavors of quarks and antiquarks.



When corrections of order o, are included, the naive parton

model formula 1s modified as follows

1

1 1
Fg(x,t>/x = j{ dyygg dz 8(zy - x)

0] o}

o

OJ

(4)

- o H
« 2 & |8, 60z - 1)+ o 1Py () + ol (2)] ggiy)
=1..2f T 3=g,1..200 1 +J 1J

(91

where the (z) are the Altarelli-Parisi functions

P,
i .
Our definition of the parton densities beyond the leading order

is the requirement that in terms of the "renormalized" scale dependent
H

parton densities 9F (x, 1), the form of Eq. (3) is preserved with
J
no corrections in order O

H
F (ke )% = 2 e§g§f(x,t) . (5)
i=1..20 * 4

Equation (5) implies that, in this order in perturbation theory, the

1t

relationship between bare and " renormalized "quark densitlies 1s given

by (i=(1...2F))

H H H

, 1 o ,

- d S X X

G (x,4) =G (x,4) +ﬁ§ﬁ e 2 {w““tﬁouP (=) +a 6. .F (wﬁ] af (y)
i o1 A R TR R AR K R E A

| Cw )
¥ ‘%%’ Fﬁe<§J ’ “sfie<§9}é%gé?9 g (6)



where for clarity we have separated the contributions of the quarks

and gluons,

Defining the moments of the quark distribution functions

(n) 1
Gvn (t) :j dx anlg(x,t) (7)

Py

A

we may write the generalization  of eg. (6) which contains all terms

in the expansion in (ast) (1 =1..27).

aét)

V2l (n)
f do L= 1F  (8)
aglo)  8la) | ok .

n)

i

7

In eq. (8), ¥ is the lowest order expansion of the standard
anomalous dimensions (moments of the fuctions P). Thus the quark
distribution function is completely specified.

For our limited purposes the only function which we need to
know is the one relevant for "non-singlet" quark distributions. We

choose to regulate the mass singularities in the relevant diagrams by

continuing the number of space-time dimensions n [lo’lll. In this
notation, the function qu (see eq. 6) is given by:
f (z) = iiC g(1 +z2) ol - )} 3 1 Lt 2 0
%s"qq 2r F é -2z ) 2 (1 - Z)+ 1 -z “
9 WZ é
+ 34¢2Z"“(§*‘? B(la«z)é + g*qu(Z)é-g’*YE"ﬁﬂm
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where

2
- 1+ 1z 3 3
qu(Z) = CF TTE:W?T++ eéwd(l - Z) (10)

In these equations, CF is the quadratic Casimir operatoT for the

fundamental (quark) representation of the SU(N) color group. For

2
b N -2
the specific case of SU(3), Cp = §=(1ﬂ general, CF R ).
The expansion factor of the dimensional regularization ig € = im%il s

and YE is Euler's constant. The distributions denoted by the plus
*
subscript are discussed in Appendix A.
The definition of fragmentation functions beyond the leading

Ié}a We define the fragmen-

order follows an entirely analogous procedure
tation functions beyond the leading order in terms of the transverse
part of one hadron inclusive ele” annihilation.

In the one photon approximation, (neglecting for simplicity
effects due to weak interactions), the cross-section differential in

angle and energy for the reaction (ee™ > H + all) with unpolarized

beams can be written in the general form:

gH(z,cose,t) = %(1 + COSZG)O‘ET{(Z,T,) + %(1 - cosze)gi(z,t) (1)

Using dimensional regularization of the mass singularities, we obtain:

o 1 % 4’ €I"(l ~€)
o7 Paq(*) +%fgql2) = - ?W'PQQ(M( Q0 >F(1 - 2¢)

+ terms regular as € * O,

£ ~
The factor 1% comes from taking gl as the QCD coupling constant when
n # 4. BExpanding about € = O and using t=4n(QR/u2)leads to eq.(9)above.
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In the center of mass frame, € 1s the angle of the hadron H with
respect to the beam direction and 2z 1s the energy of the hadron H
(expressed as a fraction of the beam energy). In terms of P and g,

(the hadron and current momenta ), we have:

2 2 2, 2 2P
" =Q,t = mQ/u, z-= 2q
Q
After integration over cos 0 we obtain:
Hz,t) = G%(Z,t) + Olé(zyt) (12)
In the naive parton model Op is given by:
H f 5 - H H
o(z) = 30, et D (2)+G_(2) (13)
=, 4 oq ;
a=1 a o0lg
where
- 4ﬂa2
Oo B 2
" 3Q
is the point like cross-section for e+eae~u+u=, In Eq. (13) the

factor 3 is from color and the index a runs over the various flavors
of quarks whose charge (in units of the proton charge) is given by e,

né@ﬁ: () 18 the number density of hadrons ¢” type H which carry

oqa

a fraction 2 of the energy of the quark q, -
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Calculating beyond the leading order, the simple parton model

formula 1s modified as follows

1
H dy 2 1
o} = 30 i -
KERD qu L ¥ Y g
CG,Ll..2f

z i=1,.2f 3=
5 8 Z 1)+ %8 p (2 , ﬁ} |
x { st ( 5 1) = Pji(y)t + Usdji(y) . (14)

As before we impose the condition that in terms of the renormalized

scale dependent parton distributions,the form of Eq. (13) is unchanged

onz,8) =30 XL &iGfa,t) (15)
i=1..2f

For our purposes all that we require is the quantity

o 2
s 2y (1l - 2) 1+z 3 1
“elgq(2) = 2w Op)(1 v @) (T r R e - a Ty
+ 2(1 - z) + éﬁi,a 2) (z - 1) + s P (z)- 1, <4 04T
5 3=~ 58 75 Tqq 7T

(16)
In order to extract the quark-quark scattering cross-section beyond
the leading order we also need information on the definition of the
gluon distribution beyond the leading order. In the context of the
parton model, we must ilmpose the condition of total momentum

conservation
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This in turn leads to the following constraints in order o

on the functions fij

1
) fdx xifi.(x)] =0 (J=1-2f)
,1..2f Yo H

2 Y {fu ( >} - 0 (18)
i=G,1“2fjc: B

These conditions on the second moment are not sufficient to completely

i=G

determine the gluon distribution function beyond the leading order.
In our calculation, we will need to kgowv fgqv This is true

(as will be explained in Section 3) even though we are neglecting

initial and fragmenting gluons by considering process (2) alone. A

complete definition of f cannot be obtained from one-loop

Gq
calculations of current induced processes because there is no direct
photon-gluon coupling. Thus, apart from the constraint of eq. 17, we

3 2 *
have an uncertainty in our quark-quark scattering calculation.

To determine how sensitive our final resulits are to the choice of

quf we tried several different forms. One possible choice is:
o o
B 8 1 8 1
anGq(z) = - §?’CF Zﬁ(l - g) + 5 PGq(z)( =ty n4dr) (19)

This ambiguity would not be present in two-particle inclusive
hadron-hadron scattering if we require that the two hadrons each

come from the two fragmenting quarks produced at large Pre
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where

2
- ¢, [_1_, + (1 -3) ] (20)

This particular form is an extremal choice, since in practice we would
not expect to encounter &(1 - 2Z) terms in any process measuring
the off-diagonal fgq(z)a

Another possibility is:

qu(l -z) = qu(z), 7 < 1 (21)

Note that eq. 17 1s automatically satisfied. This is reminiscent of

the procedure for obtaining qu(z) from qu(z) which relies on

the probabilistic interpretation of qu(z) for z < 1. However,

it is important to emphasize that one cannot interpret qu(z)

as a probability (e.g. qu(z) is not positive definite for =z < 1).
Using eq. 9, we see that qu(z) defined by eq. 21 contains

singularities at 2z = 0 and 2z = 1. As a third possible choice

which contrasts with eqgs. 19 and 21, we choose:

N (1 - 2) %g 1
anGq(z) = 5 Cp % t o PGq(z)(m Styg - on L) (22)

In section 5, we will show how sensitive our final results are to the

choice of . .
Gq
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3. ONE HADRON INCLUSIVE HADRON-HADRON SCATTERING
In this section we display the implications of the factorization
theorem for one hadron inclusive scattering. This allows us to
separate the pieces of the perturbative calculation which ultimately
are absorbed into the distribution and fragménta%ion functions from
the genuine higher order corrections. We choose to express the invariant
hadronic cross section in terms of the variables S, V, and W defined

below:

e (23)
ve1vlo (24)

N
2) 3

we define corresponding kinematical variables s, v, and w for the

where S = (P1 + P)Y, T = (Pl - PB){ and U = (P2 - P )2,, Similarly,
parton process. We will always use lower case letters for parton

variables and upper case letters for hadron variables. Using

I
Py =X Pl’ P, = x2P2, and p3 = PB/XB; we obtalin :

x.x, =1+

v o= 2x3x (25)

23
Note that v = p*(pyp5) and w203 1th analogous
oLe a = = Wi1T anailogou

relations for V and W.
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XZVW
YEX e ¥y = 1+ V) - (20)
S = X ¥%,8 (27)

In terms of these variables, we may write the  hadronic cross section:

1 do rl

37 Ivaw

j %
¥ 0 SX

3

dx
ax, ax, %%(Xl,l\/l‘zg;(xz,l\ﬁz)@k(xyl\fz)

X

3
1 do (s,v)s(1 - w) + o(1 - W)(xgzﬂs,v,w)}

&=
1
j‘ dx, dx,, wmmégr(x M?)SEZ(Xz,M2)£g£(x33M2)

Gg
X g_;do‘ (

V“*a?-}m S,V)(S(l E-*W’) (28>
where M? is the scale at which we measure the distribution and

%
fragmentation functions, and fg{ is the correction term  which we
compute in this paper. The expressions for the quark-quark (fig. 2a)
and the quark-gluon (fig. 2b, ¢, d) cross sectiors in the Born approxi-

tion for arbitrary N and e are given below:

2 2€ ¢
do _ S Fo14mu L v - e(l-v)
e CHDEE e {SV(I“V)} { (1 -v) 7

Note that X (s,v,w) also depends on M?,
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2 2€ _ €
pes) ) o (1 - d( 2 ) r

4y 2 2
NsT'(1 - € Sv@g - V) ll v - e(l - ) } (30)

{3555
v (1 - v)2

A word of explanation is needed for the presenCe of the second term
in eq. 28 which contains the gluon distribution function Qzéﬂ As
previously discussed, we are neglecting the possibility of Initial
gluons ©F gluons which fragment Into the observed hadron. However,
when one calculates in perturbation theory? one of the leading
logarithmic pieces in the quark-quark scattering diagram (say,

q; + qj - qk'+ X where i =k + Jj) comes frqm the region where

a gluon emittedf&wmlqj is on its mass shell. The gluon (G)

then participates in the hard scattering: G + a; > G" o+ qy -

The resulting singularity is a contribution to the gluon distribution
function beyond the leading order. Hence, the extraction of

the guark-quark scattering correction term é%f requires

knowledge of the gluon distribution function in order a.

Note that to fhe order in which we work =h cannot emit an

on-shell gluon (which subsequently participates in a hard

scattering ), because we require Qe to be emitted at large Prpe

We next propose to use those f&hctions‘égf and Q@ as measured in
+ e 9 s £
deep inelastic scattering and one-hadron inclusive e e amnihilation
respectively. That is, we substitute into eq. 28 the following

expressions :



L |
[ Xy,
Fooay - [ o - %)
L
é@L(X,MQ) = }f %;- §(1 - %J +

X
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= 4 P

q9q )+ oL

X X
y s 49’y

6]

S X X
e f, P )+ o ad
2m qq(y) S qq(y

)

(32)

where t = Qn(MZ/u2) (cf. eqs. 4 and 14). Note that in neglecting

incoming and fragmenting gluons,

we have set eg%é

addition 5%; is non-zero at order usz

5%;X,M2)::J{1 ay a

X

i [é'?r” b P * oTag(3) )

In order to economize our notation, we will write:

Hog ()

Inserting egs.31l,

32, and 33.into

= P v o
qq(¥) * 2Ly (x)

tPGq(X) + 2ngq(x)

1

+P + 2md
qq(X) qq(X)

eq. 28 yields:

-9

oG 0

(33)

(35)

(36)
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% ! ;
s Fvaw = o8 T T e D ()

Vs T (s,v)8(1 - w)

|

’ qq
S 1. -y do
5 (1 - w) \gé@ﬂb,v,w) + ;-qu(w) o (ws,v)

1 dcj -
’ L-vw qq<1 vw) (( 7

)S W )

Gq
1 1= 6] 1=
v ) d (( v

Y rwe Y Ty )87

1

q vw
" T B ( )
Qg

(ve) G (51 ooy

(37)
In order to calculate the desired correction termeﬁﬁis,v,w), we
compute the Feynman diagrams displayed in figures 3 and 4. The result

can be written in terms of the variables for the perburbation theory

diagrams,
qq
1 do _ 1 do
vavaw v a8 - w) (38)
Og
+ §F»9(l - w)k(s,v,w)
a

S
where §F<k(s,v,w) repredents the total order ug contribution.
The hadronic cross section is then obtained by convoluting eq. 38

with the bare distribution and fragmeﬁtation functions:
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w0 o [y ax 2 F = VF (x)D (%)
SV avaw 12 T2 Yot /o5 2 Fokt g
‘ 3
qq o
X E}% %‘%; (SBV)CS(:L - W) + ‘2‘%’6(1 - W)k(S;V,W)E (39)

At this point, we note that both equations 37 and 39 contain terms
which diverge as e + 0. However, the statement of factorization

of mass singularities means thaté%f(s;v,w) will bé finite as € » @,
To obtain an equation for Qﬁﬁ we simply equate equations 37 and 39.

The result is:

qq
] 1 ¢
@é?g@,v,w) k(s,v,w) = qu(w) = (ws,v)

qQq
1 (l-—vdj 1-v
T T ww qu 1 - vw) dv (« T - vw )s,w)
Gg
1 1 - v,y do 1 -
“Tow T T (T o)
1 ad vw

o dg LS
“rTv o gt VW w8 Tty )

(40)

We have calculated k(s,v,w) and as expected, egg, is finite as
€ * 0. We discuss the computation of k(s,v,w) in section 4 and
give the explicit result for S in section 5. It is convenient to
state the final formula for the one-hadron inclusive cross section
(i.e. eq. 28) by eliminating the variables x, and x, in favor of

1 2
v and w (using egs. 25 and 26). The result is:
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(41)

R SR ACRSLIENS

2,2 0302

o 2 (Q%)

E s(Q )CF 1+v §(1 - w) + %%SSV’W)
X Nsv (1. v) 2 |

where X, = VW/x3vwj X, = (1 - V)/x3(1 -v), and s = X1x289

Note that we have now dropped the term with the gluon distribution
function. In additionm, O had been replaced by the running coupling
constant @S(QZ) evaluated at a scale Q2 to be determined

(see eq. 44 and the discussion which follows).
4. CALCULATION OF THE. CORDER mé CONTRIRUTION
A. FElastic Graphs

In this section we present ocur results on the virtual gluon cor-
rections to the;ﬁasic quark-quark scattering cross-section (see Fig. 3).
Our caluclations ére performed in the Feynman gauge and as before,di-
mensional regularization is used to control both the infrared and ultra-
violet singularities. The ultraviolet singularities appear as poles at
e = 0 in the momentum integrations, whereas the infrared and mass
singularities appear as poles at € = 0 in the Feynman parameter
integrations.

The only subtlety in this procedure is in the evaluation of the
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wave function renormalization on external on-shell quark lipes. We
follow the procedure of subtracting the ultraviolet pole before
taking the on shell-1imit. These graphs then give a contribution
containing poles in € equal to minus the quanﬁi?y fubtracted,

Qur renormalization scheme is the so called WS . scheme which
requires the subtraction of all the ultraviolet poles together
with their attendant Buler constant and n4mw. We have chosen this
prescription scheme because it leads to small corrections and
hence presumably a well ordered perturbation series in both deep
inelastic scatterinél%lBQnd in the e'e” anmihilation total cross-
sectin§ﬁhﬂﬁseprocesses are our major source of Information about
the scale of the strong coupling constant A.

The results of our calculation are shown in Table 1. The

total contribution of the elastic graphs may be written as:

22\ 2€ €
dGZTMQQ o Oy 4mﬁ Zl+v2=€U;uvf
av NsT(1 =€) |[sv(I - v) (1-v)7

(42)

y g aS(QZ) {4wu2>€ r(1 - ¢)

El T TTon S (T = 2%¢) Av) ¢

where the function A(v) is given by
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4 2 271’2
Alv) = cF[mgnz(sw By -2l - v)+ 6+ 2
I
2 (1 - v) =203 -4 nv) (1l - v)

v) + SLnZ(l - V)

+
DD
e
[aali
-+ i
< i<
[A%} IRV
e
e
=

48]
N
o
]
p————
[
1<

et -2
+ N[é— n [V(l - v)} -2 Jlnz(l ~v)=-2Wv (1l -v) e %2_

2
141 - 2 2 2
__2_,( Vg)(ﬂ” +  In (liv) + 2 n (]_ wv)

1+
(43)
2 1 - ’ \
+1+V[Rn( v)+2v£n(l-=v;}>]
+%+-(W¥1N;2f\ n ( %)
‘ 3 q
where t = - 8(1 - v). In eq. 42, we have introduced the running
coupling comstant evaluated at an arbitrary scale QQ:
. 242
EACA % 11N - or 0
)= B e &) (44)

H

For the particular set of diagrams which we have considered, the

choice Q2 = ~ t 1s the most sultable (causing the last term in eq. 43



to vanish). This is a consequence of the fact that the lowest
order graphs which we are considering all have a t-channel pole. This
would not be true 1f a more complete set of graphs were considered.

B. Inelastic Uraphs

e . - R We oy do
There are five inelastic graphs which contribute to =wr=— to

dvdw
order aig They are shown In figure 4. When the total amplitude is
squared, one obtains 15 distinct terms. It proves convenlent to
choose a particular frame in which to perform the phase space integration.
e ERN S o . T P ,p - 11“5 j . 1Y e 3 )

We chose the Gottfried-Jackson frame where the gluon and the
unobserved quark have no net three-momentum. The 15 terms were then

f *
added; all algebraic manipulations were performed using MACSYMA .

Next, the integral over phase space in n % 4 dimensions was computed.

A1l the integrals encountered were elther straightforward or
4

expressible in terms of one basic integral. We discuss this integral

and detalls of the n-dimensional three body phase space in Appendix B.

inel .
The final result for E?%W is long and. therefre we do not

reproduce it here. We then have to add this result to the elastic

cross section. Before we can do this we must expose the mass
inel

singularities of ﬁ%ﬁﬁ° which occur at w = 1. To do this, we

proceed as follows. Schematically, we have found that:

g0 "% -1-2¢
dvdw

= A+ B (1 - w)mlmg + C(1 - w (45)

MACSYMA was developed by the Mathlab Group of the MIT Laboratory
for Computer Science.
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where A, B, and C are complicated functions of v and w but
are regular at w = 1 and contain simple poles at ¢ = 0. We now

use the identity:

R e e(@%—}%) - 26(1 - w) + 0(e%) (46)

Inserting eq. 46 into eq. 45, we find that we can write the cross

gection In the following form:

inel A A
do N 2
()
.\ E&s+ B ) 1 .0 <2n(l - w)) (47)
€ 2/ (1= W3+ 1 1 -w /

We can now add this expression to the elastic cross section {which
is proportional to &(1 - w)). One finds immediately that the terms
proporticnal to ng cancel as required. Therefore, the function
k(s,v,w) defined by eq. 38 contains terms proportional to ewl
and terms which are finite as € -+ 0. Inserting this resulting
expression into eq. 40, we have verified that the terms proportional
to €1 cancel and J%?s,v,w) is finite as £ » O.
5. THE QUARK-QUARK SCATTERING CORRECTION TERM

We now write out explicitly our result forgﬁ{(s,v,w)e At this

point, we have not chosen a particular form for qu(X)a We also

leave unspecified the cholce of the factorization scale Ng, Since

é%{is regular as € -+ 0, we may set € = 0 everywhere. The result is:
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mC 2 e
SR 2 (1 - w)
His,vyw) = sNv <( 1 :;g} <C16(1 - W)+ a =W, + 03< nl - WW >+>

4
[RenST—
2
i
T
P H
-
+
1
<
< DD
~—
DO
e
P i
NG
ER
™o
=
=)
R —
-
i
DO
<
s S—
pa—
O
—~
—
i
=
S

teg AN vty an(l - vw) + e, 40{l - v + vw)

5 7

+

Cy an(l - v) + Co An W cloﬂn(l - w) + ciq

+

n (l“VW)
gn(l-v + vw) Inw o, AT

€12 T =W 13 T=w 14 T = w

i <1 + v2w2 - 1 - v> [CF . N 8
T T ) e T Wt T ) Y
y . QVW>

where the coefficients c, (i = 1,2,-°°14) are functions of v and

w and are given in Appendix C. For convenience, we have defined:

(x) = Pgg(x)(= 2+ vy - &0 dr) (49)

The complexity of the above expression prohibits us from making

any quick observations as to the size of 4§%< We proceeded as

¢ =4 and

follows: Inserting the expression for é%/(with N =3, &3
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%
f =/4) into eq. 41, we compared the hadronic cross section
thus obtalned to that predicted by using the Born parton cross section
alone. We denote this ratio by g%i To simplify the calculation
0

we work at GC = 90

" for the one-hadron inclusive production,

which corresponds to the observation of the hadron at P%ﬁSVW(lvV),
where V and W satisfy V(1 + W) = 1. We used Scalewbreaking**
valence quark distribution functions and scale-breaking fragmentation
functions given by Feynman, Field, and FOQ:ZIforQQZZXQﬁZ) and g@(x;Mg),
still have two uncertainties to deal with: +the value of M2 and
the functional form for qua

We first fixed all our parameters and tried three forms for qu
given by egs. 19, 21, and 22. - We observed that eqs. 19 and 22 gave
almost identical results fox‘éggg When we used qu(x) = qu(l - )
(x } 0), we found that the size of the correction term decreased
somewhat as shown in Fig. 5. Thus, for the remaining calculations,
we settled on this latter choice for qu. Note that our results are
only mildly sensitive to this particular choice.

In order to decide on the optimal choice for BAZ, we looked at
four possibilities: BEZ = g, R% = - 1, Bﬂg = tu/s and BEZ = 2stu/

2 .2 2 | . L
(s + % +1u”), where s, t, and u are parton variables

Note that the limits of the w iIntegration do not go from 0 +to 1.
As a result, the "plus" distributions must be modified as explained
in Appendix A (see eqs. A4 and A5).

* The scale of the running coupling constant used here is A = 400 MeV.

*H¥%
Note that t and u are related to vand w by t = -s(l-v) and
u = - svw. ’
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In fig. 5, we plot the results of two of these choices (at /S = 27 GeV).
The smallest result foréggoccurs for M? = tu/s (which is eQual to the
transverse momentum squared of the outgoing quark which fragments into
the observed hadron). The largest value oféggoccurs for M2 = g,

with other choices of M2 giving intermediate resultse%' Even with

an optimal choice for M2, we see that the QCD corrections (indicated
by the deviation ofé%?from 1) are large and posiﬂiveo As PT
increases, é%?changes little despite the fact that é@? is the ratio
of two steeply falling cross sections. Note that in the region of
small Py our calculation is not applicable because we are no longer
in the perturbative domain. But even away from the kinematic
boundaries where we would hope to apply QCD perturbation theory,

we see that the corrections are too large to justify its use. As

we increase S, the size of the running coupling constant should
decrease and push down the size of the QCD correction term. A
comparison of V' S = 27 GeV and +/ S = 1000GeV is shown in Fig. 6.
Due to the slow logarithmic decrease of the running coupling constant,
the QCD corrections'are st111 large. Thus, we expect that even at
ISABELLE energies, QCD perturbation theory as applied to large Py
physics will remain suspect.

One may argue whether a redefinition of the coupling constant

by changing the value of A could reduce the size of the correction

N

We find that the hadronic cross section obtained by using the Born
parton cross section alone varies on the average by 20% by changing

M2 as above due to the use of scale-breaking distribution functions.



29

term. In fact, the term (85N - 10f)/9 which appears in ey (see
eq. 48 and Appendix 3) accounts for a large portion of the QCD
correction. This term could be absorbed by a change in A  because
¢y is proportional to the Born cross section. However, such a
change in A would destroy the well behaved perturbation expansion

13l and gt(e+ew > hadronsﬂ 14] .

in deep inelastic scatterin&ilz’
We conclude that the large QCD corrections we find at present
energies connot be defined away.
6. CONCLUSIONS
We have computed the higher order QCD corrections to the
quark-quark scattering process which contributes to the production

of hadrons at large in hadron-hadron collisions. The mass

Pr
singularities are absorbed into the distribution and fragmentation
functions which are defined in deep inelastic scattering and semi-
inclusive e+em annihilation. The calculation enables us to
determine whether the perturbation expansion is well behaved and
consequently whether the lowest order prediction is reliable. As

in many other processes[5’ 16, 17 % we find that the corrections

are large and we are in the position that O is not small encugh

at present energies to give a well ordered perturbation series.

The complexity of our answer does not allow us to unambiguously
identify the source of the large correction. Unlike the case of
Dre11=Yan[5 1 the large corrections here do not appear to be a
consequence of the soft radiation. We feel that the large corrections

in our case are in part due to the fact that the eight vector gluons

play a large role by giving rise fto large color factors in certaln



30

graphs. Another source of the large corrections could be that the
quark-quark Born cross sectlon begins at order di; hence the number
of diagrams associated with the first radiative corrections is larger
than in (electro-weak) current induced processes. We feel that these
features would persist in a complete calculation in which all
possible contributing parton processes are taken into account. The
ultimate conclusion of this paper is not encouraging - the QCD

perturbation expansion is out of control in another process.
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APPENDIX A
The distributions L and {&E&i;:;ﬂ)> are defined by:
1l -w N 1 =w +
Dewaw  _ (fretw) - sl o (1)
o (1 - w5+ 5 1 -w

jl f(w) (M>+ dw = j;l[f(w) - f(l)}(-»@%:ﬂl > dw

1 - w w
o)

(A2)
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Note that the range of integration here is always assumed to be
O0<w<1l. However, in eq. (41), we see that the w integration
range s A< w<1 where A E'VW/XBVE It is convenient to introduce

a more general distributionk such that for any A <1,

1 - w

A
1 1 :
}f flw)dw [£(w) = £ o (43)
p (T-w)y A L-w
and a similar definition for (gg%it:ﬁﬂl)a We find that:
A

1. 1
(l..,w)+ (1“"W)A

+an(1 - A)S(1 - w) (A4)

<£n§1~—ww>> = (&E&l.laﬁl> + %»Qn2(1 - A)8(1 - w).(A5)
+ 1 -w A

This allows us to eipresseﬁﬁis,v;w) (eq. 48) in terms of these new
digtributions. Integrating eq. (41) from w=A to w=1 is
then straightforward. Note that we could have accomplished the
same result by replacing eq. (46) with:
-l _ 1 (1l - w) 1 -€ 2
(1“")\:) *WA» €<ﬁ” “"g’(l“A) (S(l“W)‘i‘O(E )«

(46)

Finally, we wish to make some technical remarks regarding eq.

1=
1=vww’

(40). Consider for example qu(x) where x = We recall from
1
initd . that H tai t s 1ik
the d;iﬁﬁlfl;% (see eq. 34 )tha qq(x) contains terms like pry———ry
1-x :

-+

and We would like to express these distributions in
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terms of &§(1 - w), TTm%ﬁW) , and (gﬁ%%%f%fﬂ) ) because it is the
4

+
point w = 1 (the elastic 1limit) where the soft singularities

originate. Note that if desired, we may use eqgs. A4 and A5 at

the end to account for A % 0. Using the example just mentioned,

1 1l = .
we evaluate =) where X = == . We may write

4

1 - vw \_ 1 - vw
{v(l - w)él v(1 -w), + Cs(1 - w) (A7)

To determine €, integrate both sides of eq. A7 from w =0 +to

w % 1. The left hand side can then be evaluated by changing

variables to x and using egs. A3 and A4. The result:

¢ = (250 am (05 (48)

Similarly, we may derive other identities which are needed when the
right hand side of eq. (40) is simplified. As a final example, note

that

{v(llmwm> T (I } w)++ %’ pov(l - w) (29)
That is, one cannot simply factor out the v from the denominator.
APPENDIX B
We believe that our treatment of massless three particle
phase space in I space time dimensions contains some new features
and may be useful in other contexts so we give a few details of our

technique in this appendix. The three particle phase space for the
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process

IS ) *’PB + P4 + K
may be written as
7 n '
49 d'p, ak
Fen Tt an™ (o)™

] n.an +, 2\cha 2
(ps )y T (2m)°6%(py #p,-pypsk )8 (908 )81 )
i (B1)
. . o . 2
Introducing the variable p4k= p4 + k and deflnlgg v82§§p4k “we may

write eq. (Bl) as
= 1 n_.n +, 2 2 n
(P8), —jm ds,d"pad P,y 6 (P5)8(0), - 8,08 (p) + Dy= Py-D,y)

n. oon 4,2\ 4 2\0 '
x dk dp,s (k) ¢ (p4)5 (pékmpéwk) (B2)

The 3 ‘particle phase space has factored into two Lorentz
invariant parts which we may evaluate in any frame. Working in the
rest system of p4 + k we orient the vecﬁors pl,p2 and pB
go that they lie in the plane of the nth and (n al,)th components
of the momentum. Thus we have

/s,

A : |
D, = aém,(lg » ©080,51n6, cos 6, ) (B3)
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e
k - == (1, , - 0086281n61, - 0@591) (B4)

where the dots indicate n - 3 unspecified momentum which with the
above orientation of Pys Py and p3 can be trivially integrated
over. Defining +t = (p:L - p3)2 and u=s,-85-%, we introduce
rescaled variables:

V31+'=§ (B5)
_ o U
WEETR (B6)

Using egqs. B3 and B4, we obtain from eq. B2:

2€ 1 -1
(S )3 C e S (%) j { vdvdw(l - v) (1 - vv)me‘vmzawmE
: 2°mr(1 - 2¢) oYo
T T
. =2€ . 1-2e
j; dosin G%E; do, sin 8, (B7)

For definiteness, let us consider a term in the matrix element
1
(b, - k) (p, + k
1 3

squared of the bremsstrahlung graphs of the form )2

We choose:

p = (A=) y (3, 0,000, 1) (88)
2/s,
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1, 0,°°", O, sin y, cosy) (B9)

1l -

%° - (1 - vw)(1l -~ v + vw) (B10)

cos

Using eq. B7, we find that we have to evaluate an integral of the form

singzee sinl“Zee;

M T ,
2 T
J(w)zi}f a6 J{e dg . .
o 2 o 1 {1+ 00861)(1 + cos@lcosw + s1nelslnwc03627

(B11)

Feynman parameterizing the denominators, we find after some manipulation,

=] -€
J(P) = %gw(siﬂz g;) F(-€, -3 1 -€; cos® %-) (B12)
where F 1s the usual hypergeometric funetion[lg], Expanding about
£e= 0 we find:
5 ,
F(mgy - E; 1 = E; X) <B13>
where
(B14)

is the dilogarithm.
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By sultable rotation of axes and partial fractioning, all the
bremsstrahlung integrals are either straightforward or can be re-

duced into the form of eq. Bll.
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APPENDIX C

The coefficients c;, 1 = 1,2,..., 1L are defined in Eq. 48,

The are given by:

2
cl=-CF[%w1-16m2v+2}&n2(l—v)+l2}mv§m(lwv)
- é%“Qn v - %%’Qn (1 - v)
la—‘v2 2 2 N4 2
+2< 5 o+ 4n {«—-—-—} + 40" (1 = v)
lev
1+v
- 28nv k
+ 2 n (1 -v) = jﬁ;f‘éé
mNghmzv—Qan(l-v)-Zm(lmv)San»—'n’g
1 1 2 2 2 2
-5 <~i5%§> éﬁ + n <5%L—> + 2 wm” (1 -v)
1+v -
+ i%;’ {Qn (i%i} +2v tn (1 - v?} EE
85N - 10f
- ()
c, = 3Cg {1 +6 nv+2 (1= v)>u LN n [v(l ~ v)]
. = W
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o .< 1+v2w2 > <1=avw+ 1-v ) N (l+w2)(l+vg)
B (l=vw)2 1=v 1-vw w(lwv)g
“]
)2

[1+(Lev+vw) [v2w2+(luv+vw)2]

(1-v

+
(1-v+vw)

+ (l_-W)(l+v2w2>[(le)2+v2(l-=W)2]j

w(l=vw)(lwv)2

Nv(lmw)(l+v2w2

(1-v)

[ (Levwr)2+v® (1) ]
3

)
g(l“VW/

4

C'|

¥ 3.3 b 2 3.2

w(levw)(1l-v)

+ vw2 - 9v3w + 5v2w - 35vw - w + 2v2 + 2]

v b b 3 3.3 I 2 32

3 [ov Wh - 8vw” + bvPwe + 3y w" o+ 10vew
> N

(1¢v)2(l~vw

3

R Mvzw - 12vw + 3v2 - 2v + G

2 2 2 2
- o - +2vtv T+
PC,(1=vw) (2v W =2v Twr2viety 1) o Mr(lv-v+s)

w(lwv)2 (lmv)2

2Cjv(2v2w2w2v2w+hvw+v2+3)
B + Nv

2 1-v

(1-v)

-V

2

2

W

[EVAWM - 2vhw3 - 2vTWT o+ v oW o+ 25vTW - 21vTw

2

2
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11

C
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;1 3 [ v6w6 - hv6w5 -
w(l-v)"(Ll-vw)~
+ QVMWM - 9v5w3
+ 3‘v2‘w2 - 9V3

.+.

6k

8V5W5 + 2vw + Oviw

L

- 19v W - 8y + 12v v

Nv(2v2W2+v2+Mvm3)

(1-v)2 (1-vw)

AR R

w(lev ) (Levw)

+ 23vw + W = 3v2

3.2

[hv3W3 - 21vow o+ 16v2w2

2

- 3]

NV(2V2w2=5v2w+5vw+3vg+v+6)

+
(1-vw) (1-v)?
Cp bl L 3 3.3 b2 3.2
5 [2v'w = 2vw + 2v7w” + v w + 8vow
w(l-v)" (1l-vw)
- 5v2w2 + 6v2w - lhvw + v2 + 1]
. NV[SVBfiv2W2u2V2ww5vw+3]
(1=v)(lwvw)3
CF
5 5 [6V6W6 - 12v6w5 - 6v5w5 + Tv6w
2w {(1-v ) (1w )T {(Lvtvw)
+ 18v5wh - 23vhwu + 2v3wLL -7

5L

3

L 2

W - llv2W - bvw + 2v2 + 2]

L

6 3

W

+ 29V3W

- vW + 1llv w + 5v2w

- 16V5W

2

3
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“1l

#

40

L 3

+ 17v wo + 18v3w3 - oveus oWl - 66vu 2 3‘2

2v w” 4+ 15v7w W+ 8lvTw

= 30v3w - 2w+ 1Tvihe - 56v3w + 59vRw

3

- 28vw + 2w + v™ o+ 3v2 - 3v = 1]

N 6.5 _ g bt 4 5 Sk _ hb

[2v 7w w o+ 3VW -V W

(1=v)2 (Lovir ) 2 (Lovbvr)

6.3 53 43 3,3 _ 16,2

- VW - v W+ 2VTW woo+ 16V5W2

+ 6v

- 27vhw2 + 11v3‘w2 - hvsw + 10vuw - 3v3w + vgw

- 2vW + 2vLL - 8v3 + 9v2 - v + 1]

F _ SN (1+v)
2 1=v

-
2CF<11V +7) ) N(5v2+3)
(1-v)° (1-v)°
8¢ (1+v) N(v247)

1-v
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TABLE CAPTIONS

Table 1: Computation of virtual graphs to O(ug)
We give the expressions which correspond to Fig. 3 (a) - (d).
SO is equal to the Born quark-quark cross section given in eq. 29.

The sum of all the terms in this table is given in eq. 42. Terms of

0(e) are neglected., Note that + = - s(1 - v).
TABLE 1
©
2 : 2
Gy 4y T(1 =€) 4 6 ©oam
)8, - ) m=zg | o2 -8 -1 -5
L NS +6+f--=2%n(i.))}
2 3 2
O(:S Zﬂfuz ) F(l '='€> 2 f 5 )Q/ (‘“’t> + 31N - 10f
(0) 8y 57 (- =) ==y |(57 - 5N m T
o 2 € 2
s, 4mu r(1 -¢) b o 4 4
(e) 8y a7 (= %) mw2@(2%”N>{:§+€M(1“V)“T
2
B nr - ) - () 2Pl - )
o 2& 2
s druty T(1 -¢€) N 4, o (l-v A
(d)so ‘73?"(“ t ) F(lmze)(%}?“’z)[“‘é’em( v )+ 3
201 -v), ,1-% 1= vo,, 2 2,1 - v
o Bt A ( ) = ( 5 )17+ 2T (=)
1+ v v 1+ v :
aq .
S = 325252

Ie} dv
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FIGURE CAPTIONS

Fig. 1. One-hadron inclusive hadron-hadron scattering in the parton

model.

Fig. 2. Born diagrams for the hard scattering of quarks and gluons.

Fig. 3. [FElastic Graphs at kag),

oo

The interference between the quark-quark scattering

Born term and one-loop corrections is displayed. The
abbreviation w.f. stands for the corrections due to the
wave functlon renormslization on the external legs.

Flg. 4. Gluon bremsstrahlung graphs.

Fig. 5. QCD Correction to one-~hadron inclusive hadron-hadron scattering.

éﬁgis equal to the hadronic cross section including the
QCD  correction term J (see eqs. 41 and 48) divided by the
game cross section with é%{: 0. Scale-breaking distribution
and ragmentation functions are used in both cross sections.

e}

We take @cm = 90" and V8 = 27 GeV. The solid lines

correspond to the choice . (x)=f (1 - x); the dashed
Gg aq
line corresponds 1o fgq(x) given by eq. 22.

Fig. 6. Energy dependence of the QCD correction.

See caption to Fig. 5. We take ecm = 90

qu(x) = qu(l - X).
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